1	(a)	On a	a hot day, sweat forms on the surface of a person's body and the sweat evaporates.
		Exp	lain, in terms of the behaviour of molecules,
		(i)	the process of evaporation,
		<i>(</i> ''')	
		(ii)	how this process helps the body to cool down.
			[3]
	(b)	The	temperature of a person of mass 60 kg falls from 37.2 °C to 36.7 °C.
		(i)	Calculate the thermal energy lost from the body. The average specific heat capacity of the body is $4000J/(kg^\circ C)$.
			thermal energy lost =[2]

(11)	The cooling of the body was entirely du	e to the evap	oratio	n of swea	at.		
	Calculate the mass of sweat which vaporisation of sweat is 2.4×10^6 J/kg.	evaporated.	The	specific	latent	heat	of
		mass =					[2]
						[Total:	

(a)	Sta	te two ways in which <i>evaporation</i> differs from <i>boiling</i> .
	1	
	2	
(b)		s part of the question is about an experiment to determine the specific latent heat orisation of water.
	(i)	Suggest apparatus that will provide thermal energy (heat) and state the readin needed to determine the amount of thermal energy provided.
		apparatus
		readings
	(ii)	Suggest apparatus required for determining the mass of liquid vaporised and state readings needed to determine that mass.
		apparatus
		readings

3 Fig. 5.1 shows a saucepan of boiling water on an electric hotplate.

Fig. 5.1

As time passes, thermal energy (heat) is constantly supplied to the water but its temperature remains at 100 °C.

(a)	State two ways in which boiling differs from evaporation.
	1
	2
	[2
(b)	Explain, in terms of the water molecules, what happens to the thermal energy supplied to the water as it boils.
	[2

(c)	Describe an experiment to measure the specific latent heat of steam. You may include a diagram.
	[4]
	[Total: 8]

4	(a)	(i)	State two ways in which the molecular structure of a gas differs from the molecular structure of a liquid.
			1
			2
		<i>(</i> **)	
		(ii)	Compressibility is the ease with which a substance can be compressed.
			State and explain, in terms of the forces between the molecules, how the compressibility of a gas differs from that of a liquid.
			[2]
	(b)	Fig	6.1 shows a weather balloon being inflated by helium from a cylinder.
			HELIUM
			Fig. 6.1
		(i)	The helium that inflates the balloon had a volume of $0.035\mathrm{m}^3$ at a pressure of $2.6\times10^6\mathrm{Pa}$, inside the cylinder.
			The pressure of the helium in the balloon is 1.0×10^5 Pa and its temperature is the same as it was when in the cylinder.
			Calculate the volume occupied by the helium in the balloon.
			volume =[3]

(11)	As the balloon rises up through the atmosphere, the temperature of the helium decreases.
	State the effect of this temperature change on the helium molecules.
	[1]
	[Total: 8]

5 Fig. 4.1 shows a small, closed, transparent chamber containing smoke.

Fig. 4.1

The chamber is brightly lit and observed through a microscope. The smoke particles are seen as very small, bright dots.

(a)	Describe the movement of the dots.
	[2]
(b)	Explain, in terms of molecules, how this movement is caused.
	[2]
(c)	Describe what is seen as the smoke particles move towards and away from the observer.
	[1]
	[Total: 5]

6 (a) Two students hang out identical T-shirts to dry at the same time in the same neighbourhood. The only difference between the drying conditions is that one T-shirt is sheltered from any wind and the other is in a strong breeze, as shown in Fig. 6.1.

Fig. 6.1

State and explain, in terms of water molecules, the difference between the drying times of the T-shirts.
[2]

(b) Fig. 6.2 shows another occasion when a student hangs out two identical T-shirts to dry next to each other on a line. One T-shirt is folded double as shown in Fig. 6.2.

Fig. 6.2

	State and explain, in terms of water molecules, the difference between the drying times of the T-shirts.
	[2]
(c)	A runner in a hot country feels cooler if she pours water over her hair to keep it wet, even when the water is at the same temperature as the air around her.
	Explain, in terms of a change of state of water, why she feels cooler.
	[2]
	[Total: 6]